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The structures of two copper(Il) complexes of the
general formula Cul (where L represents the dianion
of H;C—C(O)-CH—~C(CHs)= N—(CH,).—OH) have
been determined by single-crystal X-ray diffraction
studies. The compound with n=2, abbreviated Cu-
(E1A), crystallizes as tetragonal crystals (a=b=
14.46 A, ¢=7.63 A) of space group P42,c with two
tetramers per unit cell (popsa=1.70; peaca=1.71 g/ cm’);
the compound with n=3, abbreviated Cu(PIA), crystal-
lizes as monoclinic crystals (a=5.98 A, b=10.97 A,
c=14.42 A, and B8=106.75") of space group P2//c,
with two dimers per unit cell (popsd=1.61; peaica=
1.61 g/cm’). Both structures were solved from Pat-
terson and electron density maps and refined by least-
squares methods to conventional R values of 8.9%
and 10.0% for Cu(EIA) and Cu(PIA), respectively.
The two structures differ in the coordination about
the bridging oxygens — in Cu(EIA) the oxygen is
tetrahedrally coordinated and in Cu(PIA) the three
— coordinate oxygen is planar. The fourth outer
orbital of the planar oxygen and the d., d,, orbitals
of copper can overlap to form a delocalized w-system;
the pairing of electrons in delocalized m-orbitals is
suggested as an explanation of the singlet ground
state observed. for most oxygen-bridged copper(ll)
complexes.

Introduction

A large number of copper(Il) complexes are known
to exhibit room temperature magnetic moments con-
siderably below the spin-only value for one unpaired
electron;? the temperature dependence of the magnetic
susceptibilities of these compounds can be explained
on the basis of a singlet ground state and a thermally
accessible triplet state. Although they have similar
magnetic properties, structure studies have indica-
ted*S that there are at least two different types of
compounds - those with direct metal-metal bonding
and those with oxygen bridges.

The copper(1l) acetate dimer’ is an example of
the first type; there has been considerable discussion
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of the type of interaction involved. Both a c-inte-
raction, involving, d» orbitals, and a A-interaction, in-
volving d.:_,: orbitals, have been suggested.

In the second type of compound, of which CuCl:-
(Pyridine oxide)® is an example, the distance between
copper ions (3.23 A) is large enough to rule out direct
interaction between copper orbitals and an interac-
tion through the bridging oxygens has been assumed.
A o-type interaction, involving the copper(ll) de_y
orbitals, has been used to explain the properties
of a number of complexes® of the type:
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All of these compounds were assumed to have the
structure found* for the compound with R=H and
R'=H.

The possibility of a w-type interaction between d..
and d,, orbitals of the copper ions and the oxygen
p. orbitals has also been suggested”® and correlated
with substituent effects in compounds of the type:
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There are also examples of compounds with simi-
lar formulas which show different magnetic proper-
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ties*'t A series of compounds of the general for-
mula Cu(R.NCH,CH;0)X has been studied;’ some of
the compounds have normal moments at room tem-
perature, other have sub-normal moments, and at
least one crystallizes in two different forms- one
with a normal and one with a sub-normal moment.

The copper(Il) compound® of the Schiff base of
2-aminoethanol and acetylacetone (hereafter referred
to as Cu(EIA)) has a normal magnetic moment at
room temperature while the Schiff base complex of
o-aminophenol and acetylacetone has a sub-normal
moment. Although structural data are available for
the latter compound,® the presence of two different
types of copper(I) ions (4- and 5-coordinate) and
two different types of bridging oxygens (y. and pa)
makes it difficult to relate the magnetic properties
to structural features.

To obtain additional information about magnetic
interactions in thesc compounds, an investigation of
structures of oxygen-bridged complexes with normal
moments and similar complexes with sub-normal mo-
ments was initiated. On the assumption that the
normal moment of the Schiff base complex of 2-amino-
ethanol, Cu(EIA), is in some way related to steric
factors in the bonding of the ligand to the metal, the
corresponding complex of 3-amino-1-propanol (here-
after abbreviated Cu(PIA)) was prepared. In this
paper we report the preparation, magnetic moment
and structure of Cu(PIA) and the structure of Cu-
(EIA). A preliminary report of the structure of
Cu(EIA) has been published.”?

Experimental Section

Preparations. Equimolar amounts of 2,4-pentane-
dione, the appropriate aminoalcohol, and potassium
hydroxide were mixed, the mixture was dissolved
in methanol, and a methanol solution containing an
equivalent amount of copper(Il) acetate was added;
the crystalline product was filtered and then dried in
vacuum.

Anal. Caled. for Cu(PTIA), CuCsHsNO;: Cu, 29.05;
C, 43.92; H, 6.00; N, 6.40. Found: Cu, 28.62;
C, 44.07; H, 596; N, 6.30. Calcd. for Cu(EIA),
CuC/H;NO;: Cu, 31.04; C,41.06; H, 5.43; N, 6.84.
Found: Cu, 30.85; C, 41.12; H, 5.37; N, 6.78.

Magnetic Susceptibilities. The magnetic susceptibi-
lities of the compounds were determined by the
Gouy method at 25°C., using HgCo(CNS), as a cali-
brant. Diamagnetic corrections were made using
published atomic values.”® For Cu(PIA): xc=-0.15,
XM T=69, and pr=0.41 B.M.; for Cu(EIA): o=
6.71, xm“"=1463, and per=1.87 BM. The value
reported for Cu(EIA) agrees with that previously
reported.®
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Collection and Reduction of X-ray Data

Cu(PIA). A needle-like crystal with approximate
dimensions 0.10 X 0.17 X 0.60 mm was mounted along
the long dimension and precession photographs were
taken, using zirconium-filtered Mo Ka radiation,
A=0.7106 A. The crystal was found to be mono-
clinic with @a=5.98(1)A,* b=1097(2) A, c=14.42-
(2) A, and B=106.75(10)°. The density calculated
on the basis of 4 formula units per unit cell, 1.61
g/cm’, agrees well with the experimental value,
1.61(2) g/cm’, obtained by the flotation method in
a mixture of carbon tetrachloride and diiodomethane.

The systematic absence of the reflections with
[ = 2n+1 on the 40! zone and the systematic absence
of the reflections with k=2n+41 on the 0kO line were
consistent only with space group P2;/c (No. 14).

Intensity data were collected on the precession
camera, using the same crystal as used for the space
group determination; a total of 631 unique, non-zero
reflections were estimated visually from the hkl
(1 = 0-3) and hkl (k = 0-2) layers. Lorentz-polari-
zation corrections were computed but no corrections
for absorption were made (u=24 cm'").

Cu(EIA). A needle-like crystal with approximate
dimensions 0.10X0.15 X 0.60 mm was mounted along
the long dimension and precession photographs were
taken using zirconium-filtered molybdenum XKe ra-
diation (A=0.7106 A). The crystal was found to be
tetragonal with a=b=14.46(2) A and ¢=7.63(2) A.
The density calculated on the basis of 8 formula
units per unit cell, 1.71 g/cm’, agrees well with the
experimental value of 1.70(2) g/cm’ obtained by the
flotation method in a mixture of carbon tetrachloride
and diiodomethane.

The systematic absence of the Ahl reflections with
I=2n4+1 and the systematic absence of hO0 reflec-
tions with A=2n+4 1 were consistent with space group
P42,c (No. 114).

Intensity data were collected with the precession
camera, using the same crystal used for the space
group determination; a total of 394 unique, non-zero
reflections were estimated visually for the hkl
(k=0-4) and the hhl layers. Lorentz-polarization
corrections were computed but no corrections for
absorption were made (=31 cm™).

Table 1. Final Positional and Thermal Parameters for Cu(PIA).

Atom X y z B, A’

Cul 0.1068(4) 0.0322(2) 0.1055(2) 4.02(6)

02 —0.1465(21) 0.0659(13) —0.0015(9) 4.89(30)
C3 —0.3369(33) 0.1486(21) —0.0102(15) 5.04(44)
C4 —0.1792(38) 0.2189(26) 0.1710(18) 6.20(52)
N5 0.0297(25) 0.1377(17) 0.2013(12) 4.57(34)
Cé 0.1506(34) 0.1398(22) 0.2908(16) 4.96(44)
C7 0.0719(37) 0.2174(25) 0.3636(17) 6.31(54)
C8 0.3489(31) 0.0695(20) 0.3327(14) 4.66(41)
C9 0.4662(34) —0.0068(24) 0.2819(15) 5.67(47)
C10 0.6916(35) —0.0719(22) 0.3353(16) 5.79(49)
o11 0.3762(22) —0.0275(15) 0.1892(10) 5.59(31)
C12 —0.2506(40) 0.2544(25) 0.0637(20) 8.07(65)

(14) Numbers in parentheses here and elsewhere in  this paper
indicate the estimhatcd standard deviation in the least significant digits.



Table I. Observed and Calculated Structure Factors (Electrons X 10) for Cu(PIA)
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3 & 240 244 0 5 214 264 -4 T 166 149 3 1 86 86 -1 2 43 31 =5 8 159 180 -7 3 97 103 [ 4 111 99 -6 16 68 66 1 4 464 457
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5 2 227 2% 1 1 118 126 -2 6 .180 177 5 9 96 91 1 0 179 1%53 <3 16 19 77 ~5 11 114 127 1 9 466 472 -4 10 156 172 2 8 240 24
5 4 135 15 1 2 47 46 -2 7 130 153 5 56 31 1 2 113 99 -2 2235 220 -5 12 41 139 1} 11 B& B2 .4 11 16 63 2 10 65 49
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Solution of the Structures Table 1ll. Final Positional and Thermal Parameters for
Cu(EIA).
For each structure, coordinates for copper were :
. . . . Atom X y z B, A
obtained from a three-dimensional Patterson synthesis
. .
and successive structure-factor calculations and Fou- Cul 0.0493(2) 0.0915(2) 0.1619(5) 2.57(6)
: th led th s f all hy- 02 0.0797(13) —0.0418(12) 0.1405(19) 2.29(32)
rier syntheses reveale (] posmons ol a non-hy
. f C3 0.1435(22) —0.0629(22) 0.2716(35) 3.21(60)
drogen atoms; full-matrix least-squares refinement o Cé 0.2166(22) 0.0114(24)  0.2783(34) 2.93(58)
all atomic coordinates, individual isotropic thermal N5 0.1652(18) 0.1035(18) 0.2758(28) 3.06(44)
. .os .
parameters, and individual layer scale factors was C6 0.1994(22)  0.1750(22)  0.3575(35)  3.18(55)
continued until no parameters showed any significant C7 0.2878(23) 0.1767(23) 0.4474(39) 3.93(71)
hang C8 0.1531(22) 0.2622(21) 0.3442(44) 3.35(56)
change. ) C9 0.0710(23)  02798(21)  0.2560(36)  3.08(55)
For Cu(PIA), refinement of the 55 variable para- Cl10  0.0288(28)  0.3774(30)  0.2435(48)  5.21(86)
meters converged to a conventional R value o11 0.0198(16) 0.2198(15) 0.1735(32) 4.08(47)

(Z||Fo|—|F¢||/Z|Fo]) of 0.100; Table I lists the final
structure parameters and Table II lists the observed
and calculated structure factors.

For Cu(EIA), refinement of the 49 variable para-
meters converged to a conventional R value of 0.089:
Table III lists the final structure parameters and
Table IV lists the observed and calculated structure
factors.

In the structure factor calculations, the scattering
factors tabulated by Ibers® were employed for all
atoms. Computations were carried out on the Bur-
roughs 5500 computer and the Univac 1108 com-

(15) J. A. Ibers in « International Tables for X-Ray Crystallo- .
graphy, » Vol. 3, The Kynoch Press, Birmingham, England, 1962. Figure 1. The molecular structure of Cu(PIA).
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Table IV Observed and Calculated Structure Factors

(Electrons X 10) for Cu(EIA).

k=1 6 3 B12 9313 6 7 277 278

K«0 2 : fg; z:i H L Fn Fr A IS TR T 7 139 16)
H L FO FC 7 4 237 189 & 0 A3? AR 8 3 w77 S0n 8 7 198 166
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2 1 588 546 11 4 277 258 8 0 6R? 77 137 133 133 3 8 200 217
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11 2 49) am8 3 2 1me 172 6 1 1el 112 6 5 250 2A& 16 D 265 229
13 2 261 272 W 7 2127 2a4m 17 1 203 19& 9 2 wih 424 4 1 4531 w27
15 2 195 1A2 s 7 300 258 12 1107 1100 115 373 354 5 1 804 595
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& 3 398 2RY s 8 280 273 T2 w2z w20 6 6 188 225 11 1 176 170
7 3 RIA 0874 11 A 218 251 8 2 391 8] 7 6 4ea 469 12 ! 226 235
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Table V Comparison of Intramolecular distances and Angles
in Cu(PIA) and Cu(EIA).

Intramolecular Distances, A
Cu(PIA)

3.026(6)

Cu(EIA)

3.006(8)
3.259(8)
1.98(2)
2.00(2)
2.32(2)
1.91(2)

Atoms

Cul-Cul’
Cul-Cul”
Cul-02
Cul-02’
Cu1-02
Cul-O11

1.86(1)
1.92(1)

1.96(2)

Cul-N5 1.83(1) 1.90(2)
C9-011 1.31(2) 1.30(4)
02-C3 1.43(2) 1.40(3)
C4-N5 1.49(3) 1.53(4)
N5-C6 1.28(2) 1.30(3)
C9-C10 1.52(3) 1.54(5)
Co6-C7 1.53(2) 1.45(4)
C8-C9 1.42(3) 1.39(4)
Co6-C8 1.40(3) 1.43(4)
C4-C12 1.53(3)

C3-C12 1.56(3)

C3-C4 1.51(4)
Atoms Cu(P1A) Cu(EIA)
Cu1-Q2-Cut’ 106.4(6) 97.8(8)

02-Cul-02-
02-Cul-02~

73.6(6) 81.4(8)

81.8(7)

02’-Cul-02~ 81.3(7)
02-Cul-N5 99.6(6) 86.0(10)
02-Cul-N5 120.3(8)
02-Cul-N5 173.1(6) 153.1(8)
02-Cut-O11 91.8(6) 98.4(9)
N5-Cul-O11 95.0(7) 95.0(11)
Cut-02-C3 129.4(12) 107.5(17)
Cu1-02-C3 124.2(12) 118.6(16)
N5-C4-C3 106.3(24)
02-C3-C4 109.4(25)
N5-C4-C12 114.4(20)

02-C3-C12 108.2(16)

C3-C12-C4 116.2(22)

Cul-N5-C4 119.6(14) 110.9(17)
C4-N5-C6 117.7(19}) 120.1(24)
Cul-N5-Cé 122.7(15) 128.8(23)
N5-Ce-C8 120.3(19) 119.1(27)
C6-C8-CY 125.8(19) 126.7(29)
C8-C9-O11 120.6(19) 126.7(30)
Cul-O11-C9 129.4(15) 122.9(21)
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puter; programs employed included modified versions
of Zalkin’s FORDAP Fourier summation program,
the Busing-Martin-Levy ORFLS and ORFFE least-
squares and function and error programs, and various
locally written programs.

Description of the Structures

The molecular geometry and the atomic numbering
scheme for Cu(PIA) and Cu(EIA) are shown in Figu-
res 1 and 2, respectively; Table V summarizes some
of the intramolecular distances and angle of the two
compounds. Table VI presents the equations of
selected planes and the distances of atoms from these
planes.

The molecular structure of Cu(EIA).

Figure 2.

Cu(PIA). The dimeric complex contains a central
four-membered ring which, because of an inversion
center at the center of the ring, is exactly planar:



Table VI. Equations of Atomic Planes and Distances (A) of
Atoms from these Planes.

(a) Equation of the Plane of the Four-Membered Ring (Cul,
02, Cul’, O2) of Cu(PIA): @

0620 X + 0.739 Y — 0.264 Z = 0.000

Cul 0.000 C4 0.044 Cc9 —0.082
02 0.000 N5 —0.028 C10 —0.106
Cul’ 0.000 Cé —0.120 o1 —0.006
o2 0.000 c7 —0.230 C12 0.235
C3 0.018 C8 —0.215

(b) Equation of the Best Least-Squares Plane? of the Acetyl-
acetonate Chelate Ring (N5, C6, C8, C9, C10, O11) of
Cu(PlA): ¢

0620 X + 0.762 Y —0.186 Z = 0.212

N5 0.014 co 0.009 02 —0.197
Co 0.019 C10 0.026 C3 —0.167
c7 0.001 o1n —0.020 C4 0.074
Cc8 —0.049 Cul —0.090 Ci12 0.658

(c) Equation of the Best Least-Squares Plane? of the Acetyl-
acetonate Chelate Ring (N5, C6, C7, C8, C9, C10, O11) of
Cu(ElA):

0499 X + 0.196 Y — 0.844 = —0.329

N5 0.040 C9 —0.012 02 —0.119
Cé6 —0.036 C10 0.041 C3 0.082
Cc7 0.026 o1 —0.021 C4 0.133
C8 —0.037 Cul —0.098

a Direction cosines of the plane refer to the orthogonal axis
system a, b, ¢c*. ? All atoms weighted at unity.

in addition, the coordination sphere of each copper ion
is planar as indicated by the fact that none of the coor-
dinated atoms are out of the plane defined by the four-
membered ring by more than 0.03 A. The coordi-
nation around the bridging oxygen is also essentially
planar, with the carbon bonded to the oxygen only
0.02 & out of the plane of the four-membered ring.

In addition to the four-membered ring, there are
two six-membered chelate rings consisting of copper,
oxygen, nitrogen, and three carbon atoms. One of
these chelate rings contains the carbons from the
acetylacetone and will be referred to hereafter as the
unsaturated chelate ring; the other six-membered che-
late ring contains the carbons from the aminopro-
panol and will be referred to hereafter as the satu-
rated chelate ring.

The five carbon atoms of each unsaturated chelate
ring are essentially coplanar (the greatest deviation
of any of the five atoms from their least-squares plane
is 0.05A) and that plane forms a dihedral angle
of ca. 10° with the plane of the four-membered ring;
since the two unsaturated chelate rings of the dimer
are related by inversion, they are bent in opposite
directions from the plane of the copper-oxygen ring.
The carbon-carbon bond distances within the chelate
ring do not differ by as much as their standard devia-
tions.

The saturated chelate ring, as expected, is consi-
derably bent. As indicated above, the carbon bonded
to the oxygen is in the plane of the four-membered
ring; the carbon bonded to the nitrogen is only slightly
out of that plane (0.12 A); the other carbon of the
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ring is the only atom of the entire structure that
causes the dimer to deviate significantly from plana-
rity—it is 0.74 A from the plane on the side opposite
the unsaturated chelate ring of the same ligand.

Cu(EIA). The tetrameric complex, like the pre-
viously reported acetylacetone-mono-(o-hydroxyanil)-
copper(Il),! can be thought of as two dimers held
together by Cu—O bonds. In the previous structure,
one dimer was displaced with respect to the other so
that there were only two such interactions per tetra-
mer; in the ethanolimine complex, one dimer is ro-
tated 90° with respect to the other so that there are
four Cu—O interactions. The Cu—Cu distance bet-
ween « dimers » (3.26 A) is longer than the Cu—Cu
distance within the « dimer » (3.01 A).

The dimer does not contain an inversion center
as did the propanolimine complex but has a two-fold
axis instead. The four-membered ring of copper and
oxygen is, thus, not required to be planar; the extent
of bending of the ring is indicated by the dihedral
angles between the two Cu—O—Cu planes, ca. 14°,
and between the two O—~Cu—O planes, ca. 12°. The
carbon bonded to the bridging oxygen also shows
the effect of bending the ring; the Cu—O—Cu plane
makes a dihedral angle of 59.6° with the Cu—O-Cu
plane.

The coordination around copper is somewhat di-
storted but is essentially bipyramidal with the two
oxygens of one chelate ligand in axial positions; the
nitrogen of the same ligand and the oxygens of two
other ligands of the tetramer occupy equatorial posi-
tions. As in the ps-oxo complexes,®' the copper
is displaced out of the equatorial plane (0.23 A).
The angles between the groups in the equatorial plane
(81, 120 and 153°) are not indicative of square pyra-
midal cootdination (90, 90, 180°) nor of trigonal
bipyramidal coordination (all 120°).

The tridentate ligand forms a six-membered ring
(unsaturated chelate ring) and a five-membered ring
(saturated chelate ring). The unsaturated chelate
ring is virtually identical to that found in the Cu(PIA)
structure; in the saturated chelate ring, the carbon
bonded to the oxygen is considerably out of the plane
of the rest of the chelate ring.

Discussion

Although their formulas differ by only one carbon
atom, the room temperature magnetic moments of
Cu(PIA) and Cu(EIA) are markedly different, 0.41
and 1.87 B.M.,, respectively. The sub-normal moment
of Cu(PIA) is characteristic of a large number of
oxygen-bridged copper(Il) complexes; the moment of
Cu(ETA), although normal for an isolated copper(II)
ion, is unsual for an oxygen-bridged copper(II) com-
plex-previously reported normal magnetic moments in
oxygen-bridged copper(IT) complexes have been in
(-0x0 complexes.™ in dimers of bis-chelates,” and

(16) J. A. Bertrand and ]J. A. Kelley, /. Am. Chem. Soc., 88, 4746
(1966); J. A. Bertrand, Inorg. Chem., 6, 495 (1967).

(17) B. T. Kilbourn and J. D. Dunitz, Inorg. Chim. Acta, 1,
209 (1967).

(18) J. A. Bevan, D. P. Graddon, and J. F. McConnell, Nature,
199, 373 (1963).
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in the dimeric complex of N,N’-ethylene-bis(salicylide-
neiminato).”. Because of the difference in magnetic
properties, a comparison of the structures of Cu(PIA)
and Cu(EIA) should provide additional evidence as
to the mechanism of the spin-exchange interaction in
oxygen-bridged complexes.

In both complexes, the unsaturated chelate ring is
essentially planar and contains C-C bonds of equal
length (1.40, 1,42, and 1.39, 1.43); this is different
from the results obtained* for the complex of cop-
per(IT) and the Schiff base formed from acetylacetone
and o-aminophenol in which the chelate ring C-C
distances were considerably different (1.32, 1.49 A).
The conclusion that there is no delocalization of the
welectrons in this portion of the ligand is not sup-
ported by the present results.

The principal difference in the two structures is
the coordination of the bridging oxygens - in Cu(PIA)
coordination about oxygen is planar while in Cu(EIA)
coordination around oxygen is tetrahedral; the diffe-
rence can be understood in terms of the chelate rings
formed. In order for the coordination around a
bridging oxygen to be planar (sp? hybridization), the
Cul-02—-C3 angle must be at least 120° (since the
Cul—-02—Cul’ angle is considerably less than 120°,
the two Cu—O-C angles for each oxygen must average
more than 120° to maintain planarity). In the case of
Cu(PIA), it is possible to have Cu—O-C angles of
129° and square-planar coordination around copper
without any steric strain; however, the same arrange-
ment in Cu(EIA), because of the smaller chelate ring,
would be extremely strained. The strain can be re-
lieved to some extent by a change to sp® hybridization
of the oxygen orbitals, thus decreasing the Cu—O-C
angle within the chelate ring; this angle is 108° in
Cu(EIA).

With the change in hybridization of the oxygen, the
ethanolimine ligand makes it impossible to have a
planar four-membered metal-oxygen ring and square-
planar coordination of the metal; in Cu(EIA), the
four-membered ring is slightly bent (the two Cu—O—Cu
planes show a dihedral angle of 14°) and the coppers
are five-coordinate. In the corresponding nickel com-
plex,® square-planar coordination of the metal is
maintained but the four-membered ring shows much
greater bending (the two Ni—O-Ni planes show a di-
hedral angle of 40°).

In the case of the planar arrangement, three of the
four outer orbitals of each bridging oxygen (2s, 2pa,
and 2p,) are used for a-bonding and the fourth orbital
(2p.) is available for w-bonding with the copper dx.,
d,. orbitals; in the case of the non-planar dimer, the
fourth orbital does not have m-symmetry and it enters
into o-bonding, forming the cubane-type structure.

It seems significant that for all of the oxygen-brid-
ged copper(Il) complexes with normal magnetic mo-
ments at room temperature, structure studies®” have
indicated tetrahedral hybridization of the outer orbi-
tals of oxygen and m-bonding is not possible.

Although the oxygen 2p, orbital and the copper d.,
d,, orbitals of Cu(PIA) have the correct symmetry for
forming m-type molecular orbitals,® the assumption that

(19) D. Hall and T. N. Walters, J. Chem. Soc., 2644 (1960).
(20) J. A. Bertrand and C. E. Kirkwood, to be published.
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dr-pr overlap would raise the =* orbital above the
ds:_,2 orbital-a condition necessary if the m-interaction
is to account for the difference in magnetic properties
of these two compounds- may be questioned. Howe-
ver, a comparison of the two structures raises que-
stions about other possible explanations of their ma-
gnetic properties. Super-exchange involving the cop-
per d.., orbitals (c-overlap) has been suggested; al-
though the Cu—O bonds within the four-membered
rings of the two structures differ by approximately
0.10 A, it seems unlikely that such a small difference
could lead to the dramatic difference in magnetic pro-
perties; furthermore, the Cu—Q distances in CuCl-
(PyO),® which has a low magnetic moment, are longer
than those in Cu(EIA). Metal-metal o-bonding has
been suggested for some vanadyl complexes® of
Schiff’s bases and is also a possibility in the copper
compounds; the fact that the Cu—Cu distances in
Cu(EIA) and Cu(PIA) are almost identical rules
against that possibility. Metal-metal rw-bonding
(through d,: orbitals) can be questioned on the same
basis.

The remaining possibility is a =-interaction involv-
ing the oxygen pr orbitals and the copper dr orbitals.
The six orbitals in C; symmetry can be combined to
form three molecular orbitals of A; symmetry and
three molecular orbitals of A, symmetry. One mole-
cular orbital of A, symmetry and one of A, symmetry
will be strongly bonding, one orbital of each symmetry
will be anti-bonding, and the remaining two orbitals
(on the metal ions) will be essentially non-bonding.
Of the ten electrons available, eight will fill the bond-
ing and non-bonding orbitals and there will be two
electrons for the pair of anti-bonding orbitals. Al-
though the two anti-bonding orbitals are not degene-
rate, the energy difference would be expected to be
small and, thus, would give rise to a singlet ground
state and a low-lying triplet state. Furthermore, since
the copper dr orbitals also overlap with the m-system
of the chelate ring and since the different symmetries
of the two anti-bonding orbitals cause them to interact
differently with the chelate = system, the energy diffe-
rence would be affected by changes in the chelate «-
system; in the case of the pyridine N-oxide com-
plexes, the interaction of the oxygen m-orbital with
the pyridine m-system would also affect the energy
difference. In studies of copper complexes of substi-
tuted pyridine N-oxides’ and in studies of both copper®
and vanadyl® complexes of Schiff’s bases formed from
substituted salicylaldehydes and substituted o-amino-
phenols, some correlation between | (the energy dif-
ference between the pair of anti-bonding orbitals)
and the resonance substituent constants has been ob-
served.

The same explanation has been given previously®
(D2 symmetry was assumed) but omission of the pair
of d., orbitals from the final molecular orbital diagram
resulted in an incorrect filling of orbitals; in Dy, sym-
metry, the highest filled level should be the by, anti-
bonding orbital derived from the d.., d,, orbitals of
the coppers.

The low magnetic moments of the vanadyl com-

(21) A. P. Ginsberg, E. Koubek, and H. |. Williams, Inorg. Chem.,
5, 1656 (1966).



plexes were previously explained by assuming a direct
overlap of d,, orbitals; however, if the above m-bond-
ing explanation is correct, the lowest lying d-orbital
would be one of the non-bonding w-orbitals. Although
labelled non-bonding, the pair of orbitals is not dege-
nerate and the interaction of the orbitals with chelate
m-orbitals of different symmetries would lead to a
slight energy difference consistent with the observed
values of J.

It should be pointed out that the oxygen-bridged
copper(Il) complexes which have normal moments at
room temperature may exhibit spin-exchange at lower
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temperatures; such effects have been observed in the
i-0xo complexes” and in Cu(ETA).? Although spin-
exchange through a pi-mechanism is not possible for
such complexes, other mechanisms (which give rise to
smaller splittings) are still possible.
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